
Curriculum Vitae – Karel Valek

Date of birth: 29th November, 1990
Telephone: (+420) 728 088 680
E-mail: kaja.valek@gmail.com
Driver’s Licence: B

Education: Masaryk University (Applied informatics, Informatics in public administration, graduated 2016), Faculty of 
Informatics, Brno
Industrial polytechnics (Applied materials – leather, plastics and rubber), industrial design, graduated June 2011,
Zlin

Skills:
Development: Python: semi-advanced, active since 2012

JavaScript / TypeScript: post-beginner-intermediate, active since 2019, TypeScript since 2023
Java: beginner, basic understanding, some projects implemented in this language
GNU BASH: intermediate
PHP: Beginner, basic understanding, yet capable of implementing SW in OOP manner
C: Basic understanding, yet capable of implementing SW.

Operating Systems: Debian / Ubuntu: intermediate, active use since 2006
Fedora / RedHat Enterprise Linux: intermediate / semi-advanced, active since 2008, RedHat Internship
For all of the systems above: Using command-line interpreter or SSH on daily basis

Containerization: Docker / Podman: active use since 2020, intermediate, capable of writing own Dockerfile/Containerfile 
deployments
Kubernetes / Helm: Beginnner, incl Helm chart writting

CI/CD: Gitlab CI/CD + GitHub Actions: Practical experience, mostly with self-hosted runner.
Travis / Jenkins: Brief experience

Project tracking: Jira / Confluence

Experiences:
Prusa Development: November 2022-April 2023

Firmware developer (Python3 + BASH, Gitlab CI/CD – self-hosted runner). Development and tooling for 
automated 3D-printer testing.

Kyndryl Client Centre / IBM Global Services Delivery Centre (GSDC) / AT&T Brno Czech Republic:
- April 2022-September 2022:

Software Developer, internal project development and maintenance, mostly in PHP 5.x
- November 2020 – March 2022:

Software Developer, “Bridges Team”, brief maintenance of IBMCLOUD cluster running Kubernetes, TypeScript 
experience w/ implementing a simple micro-service solution.
Employment change caused by employer (name change / division).

- August 2016 – September 2020:
Systems Deployment, AT&T, System installations (RHEL 7.x). Basic preparation for client and security check-ups.
System management and preparation (Networking, data storage – SAN/Fibre, LVM).
Employment change caused by acquisition by IBM GSDC, migration January 2020.

Red Hat Czech Republic Brno:
July 2015-June 2016
Internship: Anaconda/Rhinstaller team, Junior Software Engineer, automated Blivet library testing and Bachelor 
Thesis “Serialization of data storage configuration”.

September 2014: Network management and support (LAN), hosting professional multiplayer game tournament. Network 
infrastructure monitoring and correction, incl. Network infrastructure (eg. crimping, cable management).

Karel Valek, 08/22/23, 
For all programming languages where available, I prefer to use Object-Oriented approach style development.

Karel Valek, 08/22/23, 
To give a brief explanation, Blivet is a library written in Python and it can be considered as a “wrapper” for multiple tools like LVM, parted, fdisk and others that are directly interacting with data storages.

Karel Valek, 08/22/23, 
Let me please give a detailed explanation: 
 
I consider these three employers as technically one employer, given the fact we were subject of acquistion by IBM in 2019, yet fully migrated in 2020, “from office to office”.

We had also to decide our next position, as internal decision of the company was to move our duties outside of European Union. 
Please see “November 2020-March 2022” for details.

Karel Valek, 08/22/23, 
This also includes a implementation in a C language to operate a microcontroller for a highly-specific task. 
 
Therefore, a experience with C language is mentioned above, as it is not just passive knowledge.

Karel Valek, 08/22/23, 
Podman is a Red Hat’s Docker alternative, which does not require rootful access, like normal Docker does. 
 
Containers can be ran under unprivileged users and to give small technical explanation, super-user inside a container equals in permissions to a user who ran the container. 
 
I prefer to use Podman instead of Docker, yet I am capable of operating Docker containers as well.

Karel Valek, 08/22/23, 
To be exact, my very-first distribution was web-constructed SLAX. 
 
Ubuntu was the second system, yet I am utilizing Debian at present times as the most-used operating system.

I consider these skills as relevant:
- setup /etc/network/interfaces, with documentation
- Typical server workload, incl. Journalctl / systemd, system monitoring and bug fixing
- installation of the system & packages.
- Preferred usage via CLI / BASH prompt.

I use Debian on daily basis, as I host several of my services mainly on single-board like computers like Raspberry Pi (Raspbian / ARMv6/7).

Karel Valek, 08/22/23, 
I have started in active development for study purposes and because I was, humanly-speaking intrigued by software development.

mailto:kaja.valek@gmail.com


Projects:
• “DevOps”:

◦ Docker / Podman containers:
▪ Own-written Dockerfile / Containerfile solutions to either run solutions (for example Source Dedicated Server by Valve 

Software) incompatible with base systems
▪ Development-assistance) dev containers – NodeJS, Java, TypeScript, .NET Core 5.x

◦ Self-hosted solutions:
▪ Gitea (Self-hosted repository solution to avoid dependency on 3rd party software like GitHub
▪ Password manager / Vault
▪ Self-hosted frontend for “BarterBot” (Nginx)

◦ Kubernetes / Helm:
▪ Intention to learn how to operate Kubernetes as well as Helm
▪ Self-study at home
▪ Active use for existing projects and studies
▪ Completelly-separated ecosystem self-hosted:

• 1x Master
• 2x Worker nodes
• Self-hosted container registry using Docker

• Development:
◦ “BarterBot”:

▪ Formerly private project with focus on already-existing frontends (Telegram, Discord, ICQ)
▪ Intention to stay active in development field
▪ Implementations:

• 1st – 10th : Python3, including ASYNC technicues (threading.Thread, asyncio)
• 11th – 14th: NodeJS 14-16 / JavaScript, yet utilizing basics without promises
• 15th: TypeScript-based, major rewrite

▪ Custom front-end using Vue3.js (TypeScript) as a own solution without dependency on 3rd party-projects
▪ This project was and is also used by other clients as well, experience gained here was reused in next implementations
▪ Multiple backends in various programming languages

• SourcePawn
• Java + Apache Maven (Oracle-based JDK / JRE, self-designed Docker container).
• Connected via TCP/IP-based socket, data exchange in JSON
• HTTPS Express-based (TypeScript / NodeJS) REST API (mainly for data exchange with Vue.JS frontend), Let’s Encrypt.

◦ AT&T: Management Portal:
▪ During employment in AT&T, 2019
▪ Including proposed software architecture:

• Backend: Python3 (LDAP + PostgreSQL interactions)
• Frontend: PHP 7.x
• Both endpoints connected via TCP/IP socket-based communication in serialized in JSON.

▪ Actively using AT&T’s proprietary login solution.

◦ “screxec / scrstart” (“ScreenTools”):
▪ Developed own solution to mimic terminal multiplexer (SuperPutty), but fully BASH and text-only based
▪ Implemented this solution to assist my daily tasks in AT&T.

◦ “FlaskRestfulPython”
▪ Very simple website with REST API with intention to learn Flask framework written in Python
▪ Consists of simple Web user interface as well as REST API
▪ Purpose was to share files with both via HTML-based UI as well as REST API’s methods (GET, POST, PUT, DELETE)
▪ Custom-defined Docker container, service is executed as a self-contained application within the container

◦ “AnsibleTest”
▪ Adopt Ansible and methods how to work with Ansible
▪ Self-study purpose

Karel Valek, 09/30/23, 
This also includes Bootstrap 5, which is used in this project.

Karel Valek, 08/22/23, 
SuperPutty is a terminal multiplexer for Windows OSes. As I was using mostly RHEL-based servers, I have implemented my own solution, using “screen” program, which is available on-install. 
 
Basically, this has allowed me to operate on multiple servers at once (basically I broadcasted my command to my multiplexer, which has then passed it to each remote machine). 
 
It was also faster than the “SuperPutty”, as there was no graphical logic to operate with.

Karel Valek, 08/22/23, 
I would like to explain this point as well. 
 
This means I have not just developed the solution, my task was also to fully-implement a solution as a software architect. 
 
At my studies at Masaryk University, I have received education also how software is done, how ERD (Entity-Relation Diagram) is done, also what means DFD (Data-Flow Diagram). 
 
Therefore, I have utilized my knowledge from university studies as well to implement fully-self-architected solution not just in code, but also from the view of a person experienced in this field.

Karel Valek, 08/22/23, 
Note to explain, this means I had to use Oracle’s Java, which is available for free use, yet you have to accept the terms. 
 
To fully utilize Oracle Java in a container, I had to find a way, how to automate the installation.

Karel Valek, 08/22/23, 
The chat-bot is more like a automated assistand, it is not a Artificial Inteligence on it’s own. 
 
Giving more details on this, previous publicly-used implementation was named “The Precursor”, now it is called “BarterBot”. 
 
Worth to mention that experience from publicly-used robot was reused in later implementations, where it was one-shot (single command with specified result), then it was converted in newer implementations in a robot that is more capable to process human-like interactions (“I ask, you respond or you do”).

Karel Valek, 08/22/23, 
In brief explanation, previous implementations from 10-14th were done in NodeJS, as one library required to run my solution went into EOL state. Therefore, I had to switch programming languages to continue active development and maintenance of my solution. 
 
In it’s 15th implementation, I have decided to fully abbandon NodeJS-styled programming and utilized TypeScript to implement my solution. 
Not just the code got a lot cleaner, it has become a way more manageable than before, despite I have invested a lot of effort into documenting my code.

Karel Valek, 08/22/23, 
First implementations to 10th implementation were done in Python3. 
 
I have utilized every knowledge and considering SQL databases, I have also started to store some data inside a simple SQL database. 
 
To start, I have decided to use primarily PostgreSQL.

Karel Valek, 08/22/23, 
Detailed: 
This project started as a private mean, how to stay active in development field. My intention was to stay active despite the fact my employment at that time did not allow to work purely as a programmer or software developer. 
 
In it’s first form, it was mainly chatbot oriented at gathering information about lunches, where to have lunch and so on.

Later, I have added functions to track my personal expenses, where the data storage was based on XML-based files. Practically, I have utilized every knowledge from writing my bachelor thesis at that time, thus making this decision was quite natural.

Karel Valek, 08/22/23, 
To fully understand my experience with Kubernetes, I have also used self-hosted, Docker-based container registry, yet without TLS/SSL (just basic login in plaintext).

Karel Valek, 08/22/23, 
I had to learn Kubernetes architecture on it’s own, as at that time I had no other source to learn from. 
 
As I had knowledge with SrcDS servers, I have decided to learn how to correctly write and markup Helm charts with software I already knew. That has simplified my learning process to a level I was able to learn Kubernetes and Helm without any external support.

Karel Valek, 08/22/23, 
One of the reasons for migration was also Microsoft’s acquisition of GitHub.

Karel Valek, 08/22/23, 
Explanation, from the technical view, the srcds_linux binary is only i386-compatible. As I use x86_x64 architecture, I have decided to create my own Docker/Podman container that has basically Debian’s –arch=i386 installed, so not just the srcds_linux can be executed, but also accompanying binaries can be correctly read. 
 
Working, using actively.



◦ “Selenium-Playwright”
▪ Formerly projects for Selenium framework, but also containing Playwright.
▪ Understanding of both frameworks and their documentations.
▪ Intended to be used as a self-test measure for BarterBot WebClient framework
▪ Programming languages used for development:

• Java (Apache Maven + JUnit)
• Python (VirtualEnv)

▪ Secondary experiences mainly with Docker container to create self-developed environment for Java development:
• Based on Ubuntu 22.04
• openjdk
• Xorg-Xserver (vncserver)

◦ “Django” (GraphQL):
▪ Mini-project, exclusively for Django Framework (Python).
▪ GraphQL branch: self-study and full CRUD implementation for GraphQL API.
▪ Self-study.

◦ “MongoDBPlayground”
▪ Combined project of both Development and DevOps
▪ Full deployment of a MongoDB inside a self-hosted Kubernetes cluster.
▪ Two implementations:

• Python (VirtualEnv, PyTest)
• Java (Gradle + Junit)

• “Software-controlled-Hardware” / Microcontrollers
◦ Raspberry Pi semi-automated gardening

▪ Python-based, simple script that accepts arguments via CLI (automation via CRON)
• Time, GPIO pin

▪ Relays connected to Raspberry Pi’s GPIO headers to control externally-powered pumps to automatically irrigate home-
planted crops.

◦ Relay-power-oner
▪ Arduino-based (C Language), communication via additional serial line with remote master computer.
▪ Set of 6 independent relays connected to separate Arduino R3 pinouts

◦ Rpi-Lighting / WS2812b
▪ Formerly Raspberry Pi Zero W based project, code written in Python
▪ Connected to an Android application via Bluetooth protocol, simple string-based protocol to control color and power of 

set of 8 RGB LEDs.
▪ Current version based on ESP-32 based hardware, scaled up to ~250 LEDs (75W 5V PSU)

• Same Bluetooth-based protocol.

◦ “External WOL box”
▪ Arduino-based
▪ Ethernet + SD Card shield
▪ Firmware / ROM written in C language
▪ Purpose to automatically wake-up a computer via LAN, with MAC addresses stored inside a text file stored on a SD card.

• General:
◦ VirtualBox:

▪ Active use.
▪ Mainly for development inside a Debian machine
▪ “Framework” to run containers for development (Java, TypeScript, etc).

◦ KVM - Libvirt / virsh / virt-manager: Hobby experience, ran a Windows 10 OS fully virtualised on a IOMMU-based machine 
(Debian Host, Windows 10 guest, dedicated 10/12 of CPU cores).
▪ Includes hardware pass-through (namely nVidia GPU).

Karel Valek, 10/18/23, 
This project was aimed to learn GraphQL API and how to work with this API. Examples for CRUD operations are also enclosed (INSERT, SELECT, UPDATE, DELETE).

Karel Valek, 10/18/23, 
This project is a combination of both fields, Development field and DevOps field (infrastructure).

This project basically covers how to deploy a MongoDB service within a self-hosted Kubernetes Cluster, which also includes storage for data.

This means MongoDB has both backend (database itself) and frontend (User interface using Mongo Express) to access the service from the user perspective.

Also, two independent implementations in Python and Java were done and have full PyTest / JUnit testings to conclude the code was properly implemted.

The code also performs CRUD operations with the database itself and it is therefore considered as a “How to understand MongoDB” from the administrator, user and programmer’s perspectives.

Karel Valek, 08/22/23, 
Project of running a Windows OS inside a libvirt hypervisor has proven to be successful, yet from potentially licencing problems I had to revert back to previous, yet acceptable mean of usage.

Intention was to have a Linux-based OS as a main operating system for development and Windows-based OS for software otherwise not able to execute under WINE or not available in Linux.

Karel Valek, 10/02/23, 
This project is mainly associated with my employment at Prusa Development, a.s.

Karel Valek, 09/30/23, 
This means I also created my own development environment that already includes Java programming language, as it is not installed in the system by default.

To explain this, I have created my own Docker image that contains not just Java, but also I have also made possible to run graphical programs inside the Docker image as well as install Google Chrome web browser as a means of future testing the technology.

Karel Valek, 09/30/23, 
This means how to use both frameworks and their respective documentations.

As the basics of both frameworks are similar in terms of Java/Apache Maven programming, I found for example Playwright’s documentation to be well-written to be correctly understood and after gaining basics how to implement simple projects, I have decided to advance to more complex tests.



◦ LXC
▪ Simple gaming server.
▪ Munin monitoring

◦ Visual Studio Code:
▪ daily basis
▪ Multi-profile development:

• Python
• Java
• TypeScript / JavaScript

▪ Development heavily using remote means:
• Docker/Podman containers
• via SSH

◦ MS Windows: Capable, daily-use
◦ Windows Server: Basic experience, mostly with 2019 / 2008

• 3D Printing / 3D-Design
◦ Upcycled, home-made PC displays

▪ Using broken laptop’s LCD Panels.
▪ Measurements, 3D design and printing on home capacities

◦ Gardening:
▪ Set of 3D-printed frames and components from PETG and TPU materials as part of automated gardening via Raspberry Pi 

computer
▪ Two versions:

• Multi-pump
• Single-pump (Active)

◦ “The Totem”
▪ 3D-engineered and printed case for “Rpi-Lighting / WS2812b” project.

◦ Various monitor stands, VESA adaptors
▪ Accompanied as a secondary mini-project for Upcycled PC displays.
▪ Adaptor for VESA-proprietary DELL’s rear monitor attachment

◦ Elevation Table
▪ Big-sized, multi-part project for elevating 2D planar scanner above a conventional printer.
▪ Custom 3D-design engineering to address weight to 3D-printed material characteristics (tensile strength)

◦ Various laptop stands
▪ Up to 5-6 kilograms of weight or for lighter laptops.
▪ Purpose to create additional space

◦ Magnifier stand
▪ Special construction used as a cell phone holder to act as a magnifier

◦ Maintenance-related:
▪ Construction and maintenance of a 3D-printer (bearings, custom casings, cable management)
▪ Design and construction of various 3D-printers out of “scrap”, leftover material and structural parts.

◦ Mentoring / assistance
▪ Utilizing experiences to help my clients and external 3D-printer owners

• How to use 3Dprinter
• How to design custom parts
• How to correctly set up a slicing software

▪ 3Dprinter maintenance on client’s demand

◦ “External WOL box”
▪ Custom casing for mini project with same name (Arduino)

Karel Valek, 10/02/23, 
This includes external clients as well. As I have learnt most of the knowledge by myself and became proficient, I do also provide support to other people in need, sometimes even provide a technical support including maintenance of a given 3Dprinter.

To this day, I provide support to 3 independent people.

Karel Valek, 10/02/23, 
This includes design of a 3D-printer using mainly parts that are available.

Purpose is to attempt to construct a new printer out of parts that were used before or have no other use.

Karel Valek, 10/02/23, 
Currently active “setup” for gardening project. Original idea was to use 3 pumps in serial connection, yet this has proven to be wrong.

Simplified setup is able to pump out water to 5 independent tubes that are connected to various pots.

Karel Valek, 10/02/23, 
Intention is to re-use a display component rather throw it away.

With a external electronics, self-engineered casing a LCD panel can be used as a standard, external monitor.


